Harmonic Components Estimation in Power System Using Bacterial Foraging Optimization Algorithm and Stochastic Gradient Algorithm with Variable Forgetting Factor
نویسندگان
چکیده
ABSTRACT: In this paper, a hybrid configuration algorithm called stochastic gradient method with variable forgetting factor (SGVFF) is proposed to better estimate unknown parameters in a power system such as amplitude and phase of harmonics using variable forgetting factor following the bacterial foraging optimization algorithm (BFO). It must be mentioned that harmonic estimation is a nonlinear problem and using linear optimization algorithms for solving this problem reduces the convergence speed. Thus, BFO algorithm is used for initial estimation. In this paper, first, using little information and by applying BFO algorithm in an off-line procedure initial value for SGVFF algorithm is achieved and then SGVFF algorithm is gained in an on-line procedure. In the hybrid algorithm applied in this paper, amplitudes and phases are estimated simultaneously. Simulation results indicate that the proposed method has faster convergence speed, better performance and higher accuracy in a noisy system in comparison with recursive least squares variable forgetting factors algorithm (RLSVFF). This proves the superiority of the proposed method.
منابع مشابه
Optimal Estimation of Harmonic Components Using ISFLA
In this paper a novel method based on evolutionary algorithms is presented to estimate the harmonic components. In general, the optimization of the harmonic estimation process is a multi-component problem, in which evaluation of the phase and harmonic frequency is the nonlinear part of the problem and is solved based on the mathematical and evolutionary methods; while estimation of amplitude of...
متن کاملSub-transmission sub-station expansion planning based on bacterial foraging optimization algorithm
In recent years, significant research efforts have been devoted to the optimal planning of power systems. Substation Expansion Planning (SEP) as a sub-system of power system planning consists of finding the most economical solution with the optimal location and size of future substations and/or feeders to meet the future load demand. The large number of design variables and combination of discr...
متن کاملHarmonics Estimation in Power Systems using a Fast Hybrid Algorithm
In this paper a novel hybrid algorithm for harmonics estimation in power systems is proposed. The estimation of the harmonic components is a nonlinear problem due to the nonlinearity of phase of sinusoids in distorted waveforms. Most researchers implemented nonlinear methods to extract the harmonic parameters. However, nonlinear methods for amplitude estimation increase time of convergence. Hen...
متن کاملCombined Economic and Emission Dispatch Solution Using Exchange Market Algorithm
This paper proposes the exchange market algorithm (EMA) to solve the combined economic and emission dispatch (CEED) problems in thermal power plants. The EMA is a new, robust and efficient algorithm to exploit the global optimum point in optimization problems. Existence of two seeking operators in EMA provides a high ability in exploiting global optimum point. In order to show the capabilities ...
متن کاملAn Efficient Meta Heuristic Algorithm to Solve Economic Load Dispatch Problems
The Economic Load Dispatch (ELD) problems in power generation systems are to reduce the fuel cost by reducing the total cost for the generation of electric power. This paper presents an efficient Modified Firefly Algorithm (MFA), for solving ELD Problem. The main objective of the problems is to minimize the total fuel cost of the generating units having quadratic cost functions subjected to lim...
متن کامل